

computers do math weird

Weird things happen when your computer does math.

The reason it gets so weird is that your computer has to cram each number into a limited number of bits (8, 16, 32, or 64 bits).

When your computer does math, it's running CPU instructions. And there are only 2 kinds of CPU math instructions: those that work on integers, and those that work on floating point numbers.

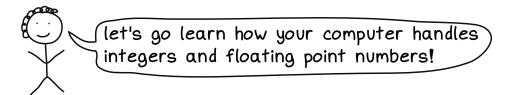


table of contents

<u>integers</u>		<u>floats</u>
4 meet the byte 5 8 bytes, many meanings 6 integers	introduction	floating point is weird
7little/big endian 8signed vs unsigned 9overflow 10big integers 1132 bits is small	o l i o what's in i o memory i o o l	floating point: the bits21 NaN and infinity22
12bases 13hexadecimal	ways to represent them	how floats are printed23
14 bitwise operations 15using bitwise operations	(+ - operations)	floating point math24
16bit flags	△ patterns	fixed point

meet the byte

You might have heard that a computer's memory is a series of bits (0s and 1s)...

010100110101010110110111

but you only access them in groups of 8 bits — a byte!

(01010011) (01010101) (10110111)

2 ways to think about a byte

- (1) 8 bits
- 2 an integer from 0 to 255

```
[′00000000] = [′ 0 ]
        (*00000001) = [1] - integer!
8 bits! (*00000010) = *2
        (61011001) = (89)
```

you <u>can't</u> just access 1 bit

Every byte in your computer's memory has an address.

If you want to fetch 1 bit, you need to fetch the whole byte at that address and then extract the bit.

some things that are 1 byte

the boolean true (in C) **r**′00000001

the ASCII character F r'01000110)

the red part of the colour #FF00FF

ሮ11111111

most things are more than one byte

- →integers and floats are usually 4 bytes or 8 bytes
- → strings are LOTS of bytes (for example, in UTF-8 a heart emoji is 3 bytes)

bytes weren't always 8 bits

In the past, people experimented with lots of different byte sizes (2, 3, 4, 5, 6, 8, and 10 bits!)

But now we've standardized on 8 bits pretty much everywhere.

8 bytes, many meanings

Bytes can be decoded in many different ways. Here are 8 bytes and a bunch of things they could potentially mean:

4.54482e+30

8 bytes (written as → integers)

 (99)
 (111)
 (109)
 (112)
 (117)
 (116)
 (101)
 (114)

 c
 o
 m
 p
 u
 t
 e
 r

 99
 111
 109
 112
 117
 116
 101
 114

 28515
 28781
 29813
 29285

1886220131 1919251573 8243122740717776739

7165065861944075634

99.111.109.112 | 117.116.101.114

1.144493e+243

2.93930e+29

rgba(99, 111, 109, 0.44) rgba(117, 116, 101, 0.45)

arpl WORD PTR jo 0x7a je 0x6c .byte 0x72 .

8 ASCII characters

8 8-bit integers

4 16-bit integers (little endian)

2 32-bit integers (little endian)

1 64-bit integer (little endian)

1 64-bit integer (big endian)

2 IPv4 addresses

2 32-bit floating point numbers

1 64-bit floating point number

2 RGBA colours

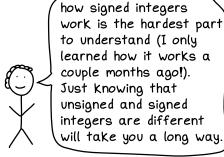
x86 machine code

this code is nonsense, but search "ascii shellcode" for x86 code which is valid ASCII

integers

To decode bytes as integers, we need to know 3 things:

- 1 the integer's size (8 bit, 16 bit, 32 bit, or 64 bit)
- ② is it little or big endian? (see page 7)
- (3) is it signed or unsigned? (see page 8)



2 bytes, 3 interpretations

(254) (0

We could interpret these 2 bytes as:

- ① 254 (little endian)
- ② 65024 (big endian, unsigned)
- 3 -512 (big endian, signed)

how you decode bytes depends on the context

- kin a program's memory, the type of the variable tells you the integer's size and if it's signed/unsigned
- *your <u>CPU</u> determines if integers are big or little endian (you don't have a choice)
- ☆ for a binary network protocol (like DNS), the <u>specification</u>
 (for DNS, that's RFC 1035) will tell you how to decode the
 bytes

examples of types

in Rust, an 164 is a signed 64-bit integer

in Go, a uint32 is an unsigned 32-bit integer

in C, a short is usually a signed 16-bit integer, depending on the platform

little endian / big endian

we write dates in two main orders

- ① 2023-03-17 ("big endian")
- 2) 17-03-2023 ("little endian")

"big endian" means that the big unit (the year) is at the start ("big end first")

similarly: computers order bytes in 2 ways

Here are 2 ways your computer might represent the integer 271:

- (1) big endian: (100000001) (100001111)
- (2) little endian: [00001111] [00000001]

How this corresponds to 271: 0000000100001111 is 271 in binary

When you send integers on a computer network, they have to be big endian. Here's how that works:

Computer A has the 16-bit integer "271" in its memory

r'00001111 r'00000001

Computer A flips the bytes and sends it as big endian

Computer B receives the big endian integer

[000000001][00001111]

Computer B flips the bytes and stores it in memory as little endian

(00001111) (00000001)

a little history

Before 1980, computers ordered their bytes in different ways.

In 1980, the Internet started being standardized, causing a huge fight over which byte order to use on the Internet.

The terms "big/little endian" come from that fight: they were coined in an article called "On Holy Wars and a Plea For Peace" which compares the byte order fight to the Big/Little Endians in Gulliver's Travels.

Big endian won that fight, so most Internet protocols (IPv4, TCP, UDP, etc.) are big endian.

But almost all modern computers are little endian. Some machines, like the Xbox 360, are big endian though.

signed vs unsigned integers

there are 2 ways to interpret every integer

unsigned:

- →always 0 or more
- →example: 8 bit unsigned ints are 0 to 255

signed:

- → half positive, half negative
- →example: 8 bit signed ints are -128 to 127

negative integers are represented in a counterintuitive way

You might think that this is -5:

sign bit 101 in binary is 5

But actually this is -5:

this looks weird, but we'll explain why!

integer addition* wraps around

for example, for 8-bit integers 255 + 1 = 0

for 16-bit integers, 65535 + 1 = 0

*by "addition", we mean "what the x86 add instruction does"

but if 255 + 1 = 0, you could also say 255 = -1 254 -2 255 -1 257 -127 -128 127 129 128

examples of bytes and their signed/unsigned ints byte unsigned signed **r**′00000000) **r′**01111111) 127 127 **r′**100000000) 128 subtract 256 from unsigned **r′**100000001) 129 -127numbers to **1**11111011) -5 aet the sianed numbers r 11111111 255 -1

this way of handling signed integers is called "two's complement"

It's popular because you can use the same circuits to add signed and unsigned integers. 5 + 255 has exactly the same result as 5 + (-1): they're both 4!

integer overflow

integers have a limited amount of space

The usual sizes for integers are:

- 8 bits: 32 bits = 4 bytes
 32 bits: 4 bytes
 64 bits: 4 bytes
 - 64 bits is often the default these days.

the biggest 8-bit unsigned integer is 255

Going above/below the limits is called overflow.

ways overflow is handled

1 wrap around

$$255 + 1 = 0$$

 $255 + 3 = 2$

- 2 raise an error
- 3 saturate \leftarrow this one is unusual 255 + 1 = 255

255 + 3 = 255

maximum numbers for different sizes

bits signed unsigned

8 127 255
16 32767 65535
32 ~2 billion ~4 billion
64 ~9 quintillion ~18 quintillion

overflows often don't throw errors

255 + 1? that number is 8 bits, so the answer is 0! that's what you wanted right?

This can cause computer VERY tricky bugs.

some languages where integer overflow happens

Java/kotlin C/C++ Rust SQL C# Swift Go R Dart

Some throw errors on overflow, some don't, for some it depends on various factors. Look up how it works in your language!

big integers

integers don't have to overflow

Instead, integers can expand to use more space as they get bigger. Integers that expand are called "big integers".

some languages offer big integers as an option

Go, Javascript, Java, and lots more.

Each language has its own big integer implementation.

big integer math is slower

It's slower because it's implemented in software, not hardware.

So a big integer addition is actually turned into lots of smaller additions.

how big integers are represented (in 60, as of 2023)

```
type Int struct {
  neg bool // sign
  abs []uint // absolute value
}
array of "digits", each digit is 64 bits
```

You can think of this array of 64-bit integers as being the number written in base 2^{64} .

some languages only have big integers

we'd rather have slower math and no weird overflow problems!

This works because people don't do a lot of math in Ruby/Python (except with numpy, which doesn't use big integers).

when are big integers useful?

- they're used in cryptography (e.g. for large Key sizes)
- ★ for math on really big integers

32 bits is small

using 32-bit integers is dangerous

Let's see some examples of how it can go wrong and why it's often better to use 64-bit integers instead!

(32-bit floats have similar problems)

64 bits is usually big enough

For example, 2⁶⁴ seconds after Jan 1, 1970 is over 100 billion years in the future: well after the death of the sun.

So a 64-bit timestamp is definitely enough space.

32 bit integers are at most 4 billion

unsigned 32-bit ints go from 0 to 4,294,967,295 4 billion

signed 32-bit ints go from -2,147,483,648 to 2,147,483,647

be wary of using 32-bit integers by accident

Systems that were designed in the 90s often have a 32-bit integer as the default.

For example, in MySQL an INTEGER is 32 bits.

times "4 billion" wasn't enough

Database primary Keys: 4 billion records really isn't that much.

IPv4 addresses: turns out we want more than 4 billion computers on the internet. Oops.

Registers: in the 90s, registers were 32 bits. 4 billion bytes of RAM is 4GB. We need more than that.

Unix timestamps: 2 billion seconds after Jan 1, 1970 is Jan 19, 2038. That's going to be an exciting day. (look up "2038 problem"!)

bases

We usually write numbers in base 10, but you can write numbers in any base. Let's write the number 103 in 3 different bases:

base 10: 103

base 2: 1100111

base 16: 67

$$\begin{array}{ccc}
6 & 7 \\
\times & \times \\
\hline
16 & 1
\end{array}$$
powers
$$\begin{array}{c}
6 & 7 \\
\hline
96 + 7 = 103
\end{array}$$

the main bases we use on computers

base 2 is called binary
base 10 is called decimal
base 16 is called hexadecimal

how to convert from base 10 to base 2

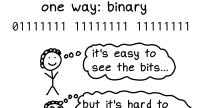
Let's convert 19! We'll start on the right and move left.

- 1. Divide by 2: 19/2 = 9 remainder 1
- 2. Write the remainder (1) below, and 9 on the left

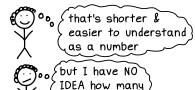
3. Repeat $1 \leftarrow 2 \leftarrow 4 \leftarrow 9 \stackrel{\text{quotient}}{\downarrow} \stackrel{\text{19}}{\downarrow} \stackrel{\text{remainder}}{\downarrow} 1 \stackrel{\text{0}}{\downarrow} 0 \stackrel{\text{1}}{\downarrow} 1 \stackrel{\text{1}}{\downarrow} 1$ answer: 10011!

but in real life I'd just ask a computer

hexadecimal



another way: base 10 83888607



bits that is

0x means it's hex

In many languages, the 0x prefix lets you write numbers in hexadecimal.

For example, in C:

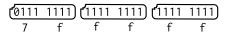
<u>0x</u> 20 == 32	(base 16)				
<u>0b</u> 10100 == 20	(base 2)				
<u>0</u> 61 == 49	(base 8)				
he careful: the 0 prefix meaning					
"base 8" can really trip you up!					

now the best way to write binary data: base 16!

It's short AND maps well to bits!

7fffff

Every hexadecimal digit represents 4 bits. So 1 byte (8 bits) is always 2 hexadecimal digits.



things hexadecimal is used for

- → color codes! (e.g. #FF00FF)
- → memory addresses!
- → hashes! (like git commit IDs)
- → displaying binary data! (like with hexdump)

there are 16 hex digits 0 → f

read a lot of them

1010110110101001010

hex	decimal	binary	hex	decimal	binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	а	10	1010
3	3	0011	b	11	1011
4	4	0100	С	12	1100
5	5	0101	d	13	1101
6	6	0110	е	14	1110
7	7	0111	f	15	1111

bitwise operations

bitwise operations operate one bit at a time

The results can be surprising when you write them in base 10:

$$8 & 3 = 0$$

but in binary it makes more sense:

$$\begin{array}{c}
00001000 \leftarrow 8 \\
\underline{00000011} \leftarrow 3 \\
\underline{00000000}
\end{array}$$

Bitwise and: the result is 1 if BOTH bits are 1

11 & 10 = 10

Bitwise or: the result is 1 if EITHER bit is a 1

Exclusive or: the result is 1 if EXACTLY ONE bit is a 1

1 $^{\circ}$ 1 = 0

1 $^{\circ}$ 0 = 1

0 $^{\circ}$ 0 = 0

11 ^ 10 = 01

Bitwise not: FLIP all the bits

$$^{\sim}0 = 1$$

 $^{\sim}1 = 0$

Left shift: add Os to the end

<< n is the same as multiplying by 2ⁿ

Right shift: chop bits off the end

>> n is the same as dividing by 2ⁿ (rounded down)

there are actually two right shifts

unsigned right shift

always pad on the left with a 0

signed right shift

if the number is negative, pad on the left with 1 instead of a 0

In some languages, unsigned right shift is >>>. In other languages, both right shifts are >> and the integer's type determines which is used.

how bitwise operations are used

Binary formats often pack information into bytes very tightly to save space.

For example, here are 2 bytes from a real TCP packet:

```
10000000 00010000

offset reserved flags

(4 bits) (3 bits) (4 bits)
```

Here's how &, |, <<, >> can be used to pack/unpack data into bytes.

check/set bit flags (see page 16 for more) set a bit flag with or: x = x | 0b010000; check a bit flag with and: if ((x & 0b010000) != 0) { ... } this example is in C

unpack/pack bits

x << 4

Now let's talk about the offset from the first panel. We can't do calculations in it with the packed form, so we need to unpack it.

You can unpack with >>:
$$\frac{\sqrt{10000000}}{x} \longrightarrow \frac{\sqrt{00001000}}{\sqrt{00001000}}$$
 and pack with <<:
$$\frac{\sqrt{00001000}}{\sqrt{00001000}} \longrightarrow \frac{\sqrt{100000000}}{\sqrt{1000000000}}$$

1000 in binary is 8, which in this case is the TCP offset value.

bit flags

bit flags are a clever way to store lots of information in one integer

If you have many options which are true or false, you can encode them all into an integer, with 1 bit for each option. 32 bits = 32 options!

For example, some of the bit flags the open function in C uses:



where you'll see bit flags

In libc, the open, socket, and mmap functions use bit flags to pass options.

The TCP and UDP protocol headers both have a flags field which has bit flags.

bit flags are used a lot in C code

Here's some C code that opens a new file:

if (flags & O_RDWR) { ... }

```
fd = open("file.txt", O_RDWR | O_CREAT, 0666);

O_RDWR is: 00000010 bitwise or! the file

O_CREAT is: 01000000 permissions
(in base 8)

You can check if a bit flag is set in C like this:
```

fun example: tic tac toe!

Here's a way to encode the state of a tic tac toe game in 18 bits:

floating point is weird

floating point 10.0 is not the same as the integer 10

10.0 (64-bit float):
0x402400000000000

(what's this 4024 doing???

computer integers work almost exactly the way you'd expect

$$1 + 2 - 3 = 0$$

but floating point numbers don't:

(0.1 + 0.2) - 0.3 = 0.00000000000000555

checking for float equality is dangerous

if x == 0.3: —bad!

(0.1 + 0.2) is not equal to 0.3!

Instead, check if x is very close to 0.3, something like this:

if abs(x - 0.3) < 0.0000001:

in floating point, very large integers get rounded

16 zeros

(try comparing those 2 numbers in your favourite language! they're the same!)

(x + y) + z is not the same as x + (y + z)

For example: (9007199254740992.0 + 1.0) - 1.0 = 9007199254740991.0

(the math term for this problem is "floating point addition isn't associative")

some intuition for precision

32-bit floats have about 8 digits of precision

64-bit floats have about 16 digits of precision

the gaps between floats

floating point numbers have to fit into 32 or 64 bits

This means there are only 2⁶⁴ 64-bit floats, the same way there are only 2⁶⁴ 64-bit integers.

(terminology note: a 64-bit float is often called a "double")

the gaps get bigger as the numbers get bigger

So the gap is 16384, or 214!

this means floating point numbers have to be spread out

You can imagine them all spaced out on a number line, like this:

with tiny gaps between them

the gaps start small

the next 64-bit float after 1.0 is 1.00000000000000022204

the gap between those two floats is 0.0000000000000000022204, or 2^{-52}

(gaps are always a power of 2)

the gaps make calculations inaccurate

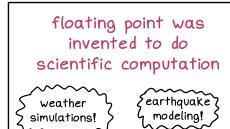
When you do math on floating point numbers, often you have to round the result to the nearest float.

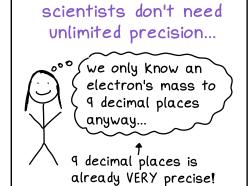
Usually this doesn't make a big difference, but small mistakes can add up.

this inaccuracy is inevitable

Floating point was actually designed very thoughtfully. But if you cram infinite numbers into 64 bits, you have to sacrifice some accuracy.

science + floating point





... but they do need TINY numbers and GIANT numbers

mass of hydrogen atom:

 $1.6735575 * 10^{-24}$ grams

distance to Andromeda galaxy:

 2.4×10^{22} meters

floating point is inspired by scientific notation

orbital

mechanics

 $1.6735575 \times 10^{-24} g$

The idea in floating point is to store a number by splitting it into:

- → the exponent (like -24)
- → the multiplier (like 1.6735575)
- →and its sign (+ or -)

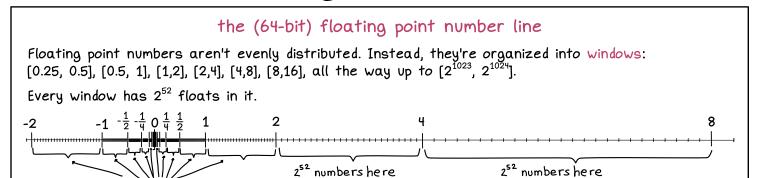
floating point isn't just used for science though

For example, Javascript's number type is floating point. Before it added BigInt in 2021, Javascript didn't have integers at all!

Similarly, numbers in JSON are often interpreted as floating point numbers.

people usually explain floating point as "it's scientific notation, but in binary!" That's true, but I've never found it intuitive so we're going to explain it a different way.

the floating point number line



the windows go from REALLY small to REALLY big

252 numbers in each of these

The window closest to 0 is 12^{-1023} 2^{-1022}

This is TINY: a hydrogen atom weighs about 2^{-76} grams.

The biggest window is $[2^{1023}, 2^{1024}]$ This is HUUUGE: the farthest galaxy we know about is about 2^{40} meters away.

the gaps between floats double with every window

window [1, 2]	gap 2 ⁻⁵²	1 2
[2, 4]	2 ⁻⁵¹	2 4
[4, 8]	2 ⁻⁵⁰	4
[8, 16]	2 ⁻⁴⁹	8

- → In the window $[2^n, 2^{n+1}]$, the gap between floats is 2^{n-52}
- → 100000000000000000.0 is in the window $[2^{53}, 2^{54}]$, where the gap is 2^{1} (or 2)

"significand", but I

calling it "offset"

find that term confusing so we're

the bits

Floats need to fit into 64 bits. But how do we actually convert a number like 10.87 into 64 bits?

First, we split the number into 3 parts: the sign, a power of 2 and an offset the usual term is

$$10.87 = +(8 + 2.87)$$
biggest power of 2 that's less than 10.87

Next, we encode the sign, power of 2, and offset into bits!

encoding the sign (1 bit)
+ is 0
- is 1

floating point encoding is defined in the IEEE 754 standard

since it's standardized, it works the same way on every computer!

it was originally defined in 1985

```
encoding the exponent
(11 bits, 2^{-1023} to 2^{1023})

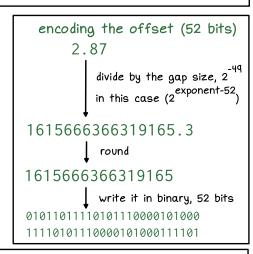
8

2<sup>3</sup> = 8

add 1023 (this makes sure that the result is positive)

1026

write it in binary, in 11 bits
10000000010
```



And here's 10.87!

<u>(01000000) (00100101) (10111101) (01110000) (10100011) (11010111) (00001010) (00111101</u>

NaN and infinity

NaN stands for "not a number"

It means the result of the calculation is undefined.

$$0/0 = NaN$$

 $sqrt(-1) = NaN$
 $log(-1) = NaN$

infinity

"Infinity" just means "this number is too big for floating point to handle." There are two infinities: one positive, one negative.

```
2.0**1024 = inf

-1 / 0 = -inf

inf - 10 = inf means 2<sup>1024</sup>

inf - inf = NaN
```

NaNs spread

As soon as one NaN gets in, it gets everywhere

```
NaN * 5 = NaN
NaN + 2 = NaN
```

NaN != NaN

NaN isn't equal to anything (including itself)

NaN and infinity: the bits

A floating point value is NaN or infinity if the bits in the exponent are all 1. For example, this is a NaN:

It's infinity if the offset bits are all 0, otherwise it's NaN.

There are 2^{52} values like this: 2 of them are $\pm infinity$ and the other 2^{52} -2 are NaN.

We usually treat NaN like a single value though.

a note on byte order

All of the floating point examples in this zine use a big endian byte order, because it's easier to read. But most computers use a little endian byte order (see page 7).

You can see this in action at https://memory-spy.wizardzines.com

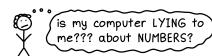
how floats are printed

computers lie when they print out floats

(by rounding)

For example 0.12 isn't 0.12, it's actually (roughly):

0.1199999999999995559



the string -> float

If your program says:

x = 0.12

your interpreter / compiler needs to translate "0.12" into the float 0.119999999999999995559. Most languages will use the strtod ("string to double") function from libc to do that translation.

the float -> string translation

This is where the rounding comes in. Computers round to make the numbers shorter and easier to read.

1.199999999999995559

→1.2

float -> string translation is actually super complicated

Every floating point number needs a unique string representation.

There are a bunch of academic papers about how to do this well, search "Printing floating point numbers accurately" to read more about it.

some examples of printing floats

1.19900000000000006573

1.199

1.199999999000000001637

└ 1.19999999

1.1999999999998996358

1.1999999999999

1.199999999999995559

↓1.2

you can also print floats in base 16 or base 2

For example, 0.1 as a 32-bit

float is: p-4 is the base 16

base 16: 0x1.99999ap-4 version of e-4
base 2: 1.100110011001100110011001p-100

The base 2 / base 16 representations are not rounded, but they're rarely used.

floating point math

let's deconstruct 0.1 + 0.2

- The closest 64-bit float to 0.1 is (roughly)
 - 0.1000000000000000055511151231
- ② For 0.2, it's (roughly)
 0.2000000000000000111022302462
- ③ 0.1000000000000000055511151231 + 0.20000000000000000111022302462 = 0.300000000000000000166533453693
- ¶ Inconveniently,
 - 0.3000000000000000166533453693 is exactly in between 2 floating point numbers:
 - 0.299999999999999888977 and 0.30000000000000000004440892
- 5 How do we pick the answer?
 0.300000000000000004440892 has
 an even offset (see page 21),
 so we round to that one

losing a little precision is okay

adding a number to a MUCH smaller

number is bad

For example:

```
1.0 + 2**-57 = 1.0
(try it!)
```

2**53 + 1.0 = 2**53

the more numbers you add, the more precision you lose

This Go code:

```
var meters float32 = 0.0
for i := 0; i < 100000000; i++ {
    meters += 0.01
}
fmt.Println(meters)
prints out 262144, not 1000000
because 262144.0 + 0.1 = 262144.0</pre>
```

use scientific computing libraries if you can

There are special algorithms for adding up lots of small floating numbers without losing accuracy!

For example numpy implements them.

fixed point

just because you see 0.23, doesn't mean it's floating point

For example, in this RGBA color: rgba(211, 7, 23, 0.23) opacity

0.23 isn't a float at all, it's the 8-bit integer 59. Let's see how that works!

fixed point is the most common alternative to floating point

It's very simple and it's pretty easy to implement!

fixed point numbers are integers

You interpret them as the integer divided by some fixed number (like 255 or 10000)

For example, that opacity should be divided by 255

59 / 255 = 0.23ish

things fixed point is often used for

money \$1.23 => 123

time 0.1 seconds =>

100000 microseconds

opacity 0.23 => 59

implementing fixed point is easy

(especially if you only need to add and subtract)

You just need:

- → an integer
- → some code to display it (by dividing by 255 or something)

fixed point can help avoid accuracy issues

If you try to represent the current Unix epoch in nanoseconds as a 64-bit float, you'll lose accuracy.

But if it's a 64-bit integer, it'll be fine.

more floating point alternatives

there are many alternative ways to represent numbers

These are all implemented in software (not hardware) so they're a lot slower, and different languages have different libraries.

alternative 1: decimal floating point

This is like regular floating point, but in base 10 instead of base 2. It's also standardized in IEEE 754.

Examples: Python's decimal module or Java's BigDecimal

alternative 2: fractions

This lets you do exact calculations with fractions (1/10 + 2/10 = 3/10)

Examples: Python's fractions module in the standard library, Lisps have first-class support

alternative 3: symbolic computation

For example, sqrt(2) instead of 1.414.

You'll see this in computer algebra systems like Mathematica, Maple, or sympy.

alternative 4: interval arithmetic

The idea is to store every number as a range so that you can precisely track your error bars.

Probably the least mainstream of these alternatives.

alternative 5: binary-coded decimal

This is how floating point numbers (and integers) were stored on IBM computers in the 60s, and you can still occasionally see it today in old formats like ISO 8583 for financial transactions.

thanks for reading

If you want to learn more, my favourite ways to learn about integers and floats have been to:

- * experiment to find out how my favourite programming languages handle some of the edge cases in this zine (like integer overflow!)
- ★ play around with the bits in a float at https://float.exposed (or the bits in an integer at https://integer.exposed)
- * use a debugger to see how integers and floats are actually represented in a program's memory. You can try this at https://memory-spy.wizardzines.com

credits

Pairing: Marie LeBlanc Flanagan Cover illustration: Vladimir kašiković Editing: Dolly Lanuza, kamal Marhubi Copy editing: Gersande La Flèche Technical review: an anonymous friend more at *wizardzines.com *

O this?