LIRS Sy RBIL

The weird truth about how your c
omputer doe
S math

%.630@ W&I@@Eﬁﬁ

¢
01

o

computers do math weird

Weird things happen when your computer does math.

0.1 + 0.2 =
o © (L0.30000000000000004
o
;J'lo © © (4294967295 + 1 = 0

The reason it gets so weird is that your computer has to cram each
number into a limited number of bits (8, 16, 32, or 64 bits).

vh, that's not
what they taught
me in math class...

When your computer does math, it's running CPU instructions. And there
are only 2 Kinds of CPU math instructions: those that work on
integers, and those that work on floating point numbers.

let's go learn how your computer handles
integers and floating point numbers!

table of contents

integers

IO meet the byte

5.... 8 bytes, many meanings
b integers
Feo little/big endian
B, signed vs unsigned
S TR overflow
10, big integers
1 32 bits is small
12 s bases
13 i, hexadecimal
Mo bitwise operations
15...using bitwise operations
16 i,

introduction

what's in
mermory

__

ways fo

(represent them

C

+ - .
(2 operations

bi’rﬂags ED patterns

_J

floats
floating point is weird 17
the gaps between floats............ 18
science @ floating point........ 149

the floating point number line...20

floating point: the bits......... 21
NaN and infinity ... 22
how floats are printed................ 23
floating point math ... 24
fixed point........... 25
more alternatives.................. 26

meet the byte

You might have heard that
a computer's memory is a
series of bits (0s and 1s)...

010100110101010110110111

but you only access them in
groups of 8 bits — a byte!

01010011) (01010101) [10110111)

2 ways to think
about a byte
Q) 8 bits
@ an integer from 0 to 255
=
/" = him‘eger!
® ke -
=

you can't just

access 1 bit
Every byte in your computer's
memory has an address.

If you want to fetch 1 bit, you
need to fetch the whole byte at
that address and then extract

the bit.
"1 bit

some things that

are 1 byte
the boolean the ASCIIL
true (in C) character F

the red part of the
colour #EFQOFF

11111111

most things are more
than one byte

—sintegers and floats are
usually 4 bytes or 8 bytes

—» strings are LOTS of bytes
(for example, in UTF-8 a
heart emoji is 3 bytes)

bytes weren't
always 8 bits

In the past, people experimented
with lots of different byte sizes
(2, 3, 4, 5, 6, 8, and 10 bits!)

But now we've standardized on
8 bits pretty much everywhere.

8 bytes, many meanings

Bytes can be decoded in many different ways. Here are 8 bytes and a
bunch of things they could potentially mean:

8 bytes
(written as ~* 99) (111) (109) (112) (117) (116) (101)(114)

integers)

cl o[m[pJ] ult e]r]8ASCI characters
99 [111] 1e9] 112] 117 [116[101 [114] 8 8-bit integers
28515 | 28781 [29813 [29285 | 4 16-bit integers (little endian)

|

|

|

| 1886220131 | 1919251573 | 2 32-bit integers (little endian)

| 8243122740717776739 | 1 64-bit integer (little endian)

| 7165065861944075634 | 1 64-bit integer (big endian)
don't worry if \ 99 171.109.112 | 117.116.101.114] 2 IPv4 addresses
3‘;‘;6‘2?;“ all || 2.93930e+29 | 4.54482e+30 | 2 32-bit floating point numbers
this right now! | | 1.144493e+243 | 1 64-bit floating point number

We'll explain. [rgba(99, 111, 109, 0.44)| rgba(117, 116, 101, 0.45)] 2 RGBA colours

arpl WORD PTR| 5 ox74 je @x6c |-byte .
[edi+0x6d],bp J J o2 | X86 machine code

this code is nonsense, but
search "ascii shellcode" for x86
code which is valid ASCII

integers

6

To decode bytes as integers,

we need to Know 3 things:

® the integer's size (8 bit, 16
bit, 32 bit, or 64 bit)
@ is it little or big endian?
(see page 7)

® is it signed or unsigned?
(see page 8)

how signed integers
work is the hardest part
to understand (I only
learned how it works a
couple months ago!).
Just knowing that
unsigned and signed
integers are different
will fake you a long way.

2 bytes, 3 interpretations

We could interpret these 2
bytes as:

O 254 (little endian)
(® 65024 (big endian, unsigned)
® -512 (big endian, signed)

how you decode bytes depends on the context

%in a program's memory, the tupe of the variable tells
you the integer's size and if it's signed/unsigned

#your CPU determines if integers are big or little endian

(you don't have a choice)

¥ for a binary network protocol (like DNS), the specification
(for DNS, that's RFC 1035) will tell you how to decode the

bytes

examples of types

in Rust, an i64 is a signed
64-bit integer

in Go, a uint32 is an
unsigned 32-bit integer

in C, a short is vsvally a
signed 16-bit integer,
depending on the platform

little endian / big endian

"71_

we write dates in
two main orders
® 2023-03-17 ("big endian")
® 17-03-2023 ("little endian")
(®03-17-2023 ("american" &)

"big endian" means that the
big unit (the year) is at the
start ("big end first")

similarly: computers
order bytes in 2 ways

Here are 2 ways your computer might
represent the integer 271:

@ big endian: 100000001} (20001111
@) little endian: (20001111) 00000001}

When you send integers on a computer network, they
have to be big endian. Here's how that works:

A AN Y
Computer A Computer A Computer B || Computer B
has the 16-bit | flips the bytes || receives the |[|flips the bytes
infeger "271" | and sends it big endian and stores it
in its memory [l as big endian integer in memory as

little endian
(ee001111) (20000001} N T g (I [T o

a little history

Before 19480, computers ordered
their bytes in different ways.

In 1480, the Internet started
being standardized, causing a
huge fight over which byte

order to use on the Internet.

The terms "big/little endian"
come from that fight: they
were coined in an article called
"On Holy Wars and a Plea For
Peace" which compares the byte
order fight to the Big/Little
Endians in Gulliver's Travels.

Big endian won that fight, so
most Internet protocols (IPvY,
TCP, UDP, etc.) are big endian.

But almost all modern
computers are little endian.
Some machines, like the Xbox
360, are big endian though.

signed vs unsigned im‘egers 8

there are 2 ways to
inferpret every integer

unsigned:
—always 0 or more
—»example: 8 bit unsigned ints
are 0 to 255
signed:
—>half positive, half negative
—»example: 8 bit signed ints
are -128 to 127

r
sign bit

negative integers are
represented in a
counterintuitive way

You might think that this is -5:
T

101 in binary is 5
But actually this is -5:

P (SRR

this looks weird, but we'll explain why!

integer addition™

wraps around
for example, for 8-bit
infegers 255 + 1 = @

for 16-bit integers,
65535 + 1 =0

#by "addition", we mean "what
the x86 add instruction does"

but if 255 + 1 = 9, you
could also say 255 = -1

examples of bytes and
their signed/unsigned ints

byte unsigned

0
127
10000000) 128
129
11111011) 251
11111111) 255

signed
0

127
-128
-127

subtract 256
from unsigned
numbers fo
-5 get the signed
-1 numbers

this way of handling
signed integers is called
"two's complement"

It's popular because you can
use the same circvits to add
signed and unsigned integers.
5 + 255 has exactly the same
result as 5 + (-1): they're
both 4!

integer overflow

9

integers have a limited
amount of space

The vsuval sizes for integers are:

3 bits: @B
16 bits: D @
32 bits:/

64 bits: .?......

32 bits = 4 bytes

64 bits is often the
default these days.

the biggest 8-bit
unsigned integer is 255

0 °° (o what happens
if you do 255 + 17

Going above/below the
limits is called overflow.

ways overflow is handled

® wrap around
255 + 1
255 + 3

@raise an error

® saturate «———this one
255 + 1 = 255 is unusual
255 + 3 = 255

2

maximum numbers for
different sizes

bits signed unsigned
8 127 255

16 32767 65535

32 ~2 billion ~4 billion

64 ~4 quintillion ~18 quintillion

overflows often
don't throw errors

255 + 17 that number
is 8 bits, so the
answer is 0! that's
what you wanted right?

~—~ This can cavse
COmpu+er VERY tricky bugs.

some languages where
integer overflow happens

Java/kKotlin C/C++ Ruet
SQL C# Swift Go R
Dart

Some throw errors on overflow,
some don't, for some it depends
on various factors. Look up how
it works in your language!

big integers

[¢

integers don't

have to overflow
Instead, integers can expand
to use more space as they get

bigger. Integers that expand
are called "big integers".

big integer

I'm going to use
ONE THOUSAND
bytes of space!

big integer
math is slower

It's slower because it's
implemented in software, not
hardware.

So a big integer addition is
actually turned into lots of
smaller additions.

some languages
offer big integers
as an option

Go, Javascript, Java, and
lots more.

Each language has its own
big integer implementation.

how big integers
are represented
(in Go, as of 2023)

type Int struct {
neg bool // sign
abs [Juint // absolute value

array of "digits", each digit is 64 bits

You can think of this array of 64-bit
integers as being the number written
in base 2°".

some languages only
have big integers

we'd rather have slower math
and no weird overflow problems!

Python 3 Ruby

This works because people don't
do a lot of math in Ruby/Python
(except with numpy, which doesn't
use big integers).

when are big
infegers useful?

&« they're used in cryptography
(e.g9. for large key sizes)

& for math on really big
integers

32 bits is small

using 32-bit integers
is dangerous

Let's see some examples of
how it can go wrong and
why it's often better to use
64-bit integers instead!

(32-bit floats have similar
problems)

32 bit integers are
at most 4 billion

unsigned 32-bit ints go from
0 to 4,294,967,2950 .0

sighed 32-bit ints go from
~2,147,483,648 to 2,147,483,647

64 bits is usually
big enough

For example, 2°* seconds after
Jan 1, 1970 is over 100 billion
years in the future: well
after the death of the sun.

So a 64-bit timestamp is
definitely enough space.

be wary of using 32-bit
integers by accident
Systems that were designed in

the 40s often have a 32-bit
integer as the default.

For example, in MySQL an
INTEGER is 32 bits.

times "4 billion"
wasn't enough

Database primary keys: 4 billion
records really isn't that much.

IPv4 addresses: turns out we
want more than 4 billion
computers on the internet.
Oops.

Registers: in the 40s, registers
were 32 bits. 4 billion bytes of

RAM is 4GB. We need more than
that.

Unix timestamps: 2 billion
seconds after Jan 1, 19470
is Jan 14, 2038. That's
going to be an exciting day.
(look up "2038 problem™)

bases V3

We vsvally write numbers in base 10, but you can write numbers in any base.

Let's write the number 103 in 3 different bases:

base 10: 103
1 0 3
X X X
powers
+ of 10
100 + @ + 3 = 103

base 2: 1100111 base 16: 67

1 1 o 0 1 1 1 6 7

X X X X X ol x powers X X powers
AIBIGIOIVIBIOLEE A8 (D¢ of 16
64+32+0 +0 +4 +2 +1 =103 96 + 7 = 103

base 2, 10, and 16 are
the main bases we
use on computers

base 2 is called binary
base 10 is called decimal
base 16 is called hexadecimal

how to convert from base 10 to base 2
Let's convert 19! We'll start on the right and move left.

1. Divide by 2: 19/2 = 4 remainder 1
2. Write the remainder (1) below, and 4 on the left

but in real
life 1'd

jus’r ask a
computer

3. Repeat

1 ‘__2 — 4‘__9quo1'ien’r

[N
1 0 o 1 1

answer: 100111

l remainder

hexadecimal

13

let's talk about how to write binary data

one way: binary
Q1111111 111111171 11111111

000 (it's easy to
see the bits...
°°° but it's hard to
o read a lot of them

1010110110101001010

another way: base 10
83888607

that's shorter &
easier to understand
as a number

but I have NO
IDEA how many
bits that is

now the best way to write
binary data: base 16!
It's short AND maps well to bits!
TFFFFF

Every hexadecimal digit represents 4
bits. So 1 byte (8 bits) is always 2
hexadecimal digits.

0111 1111)¢1111 1111 (1111 1111)
7 f f f f f

there are 16 hex digits

0 —f

hex decimal binary

0000
0001
0010
0011
0100
0101
0110
0111

NoouoThhwN—,O

0
1
2
3
4
5
6
7

hex decimal binary
8 8 1000
9 9 1001
a 10 1010
b 11 1011
c 12 1100
d 13 1101
e 14 1110
f 15 1111

0x means it's hex

In many languages, the ox
prefix (ets you write numbers
in hexadecimal.

For example, in C:

0x20 == 32 (base 16)
0b10100 == 20 (base 2)
061 == 49 (base 8)

Xbe careful: the 0 prefix meaning
"base 8" can really frip you up!

things hexadecimal
is used for

—» color codes! (e.g. #FFQOFF)
- memory addresses!
- hashes! (like git commit 1Ds)

- displaying binary data!
(like with hexdump)

bitwise operations

I

bitwise operations operate
one bit at a time

The results can be surprising
when you write them in base 10:

8 &3 =20

but in binary it makes more

sense:

00001000 —8
& 00000011 —3

00000000

Bitwise and: the
result is 1 if
BOTH bits are 1

1&1 =1
1&0 =0
0&0=20
11 & 10 = 10

@

Bitwise or: the
result is 1 if
EITHER bit is a 1

@

Exclusive or: the
result is 1 if
EXACTLY ONE

bit is a 1

141 =20
120 =1
0 ~0=20
11 * 10 = 01

©

Bitwise not:
FLIP all the
bits

~Q = 1
~1 =0
~10 = 01

©

Left shift: add
0s to the end

1110 << 3
= 1110000

<< n is the same
as multiplying
by 2"

<,

Right shift: chop
bite off the end

01100001 >> 2
= 00011000

>> n is the same
as dividing by 2"
(rounded down)

unsigned right shift

253 >> 1 = 126
11111101) —

always pad on the
left with a 0

there are actually two right shifts

signed right shift

=3>>1=-2

11111101) —» (11111110)

if the number is negative, pad on
the left with 1 instead of a 0

In some languages, unsigned right shift is >>>. In other languages, both
right shifts are >> and the integer's type determines which is used.

how bitwise operations are vsed

15

Binary formats often pack
information intfo bytes very
tightly to save space.

For example, here are 2 bytes
from a real TCP packet:

(10000000) (00010000)

offset reserved flags
(4 bits) (3 bits) (4 bits)

Here's how &, |, <<, >> can be used
to pack/unpack data into bytes.

bit masking

Let's say we have the 2 bytes from the previous panel, and we want to
extract just the flags part. Here's how to do it with & (bitwise and):

The idea is that you put a mask "on top" of the bytes to erase bits:

X (10000000) (20010000) + nvmber

OXQ1FF (©0000001) (11111111) e—bit mask

X & OxO1FF 00000000) (00010000) o how they
\ combine

these 7 bits all get set to 0 these 4 bits stay the same

check/set bit flags

(see page 16 for more)
set a bit flag with or:
X = x | 0b010000;

check a bit flag with and:
if ((x & 0b010000) != 0) {

¥ this example is in C

unpack/pack bits

Now let's talk about the offset from the first panel. We can't do
calevlations in it with the packed form, so we need to unpack it.

10000000 — (00001000

You can unpack with >>:

X X >> 4
and pack with <<: 00001000) —["10000000
X X << 4

1000 in binary is 8, which in this case is the TCP offset valve.

bit flags

16

bit flags are a clever way to store lots of
information in one integer

If you have many options which are true or false, you can
encode them all into an integer, with 1 bit for each option.
32 bits = 32 options!

For example, some of the bit flags the open function in C uses:

(00000000) (00000000) (00000000) [01000010)
t

t
nofollow append write only
(this is on Linux) truncate) Creote \ ead write

where you'll see
bit flags

In libe, the open, socket, and
mmap functions use bit flags
to pass options.

The TCP and UDP protocol
headers both have a flags
field which has bit flags.

bit flags are used a lot in C code
Here's some C code that opens a new file:

fd = open("file.txt"”, O_RDWR | O_CREAT, 0666);

O_RDWR is: 00000010 bitwise or! the file
O_CREAT is: 01000000 Rermissions
(in base 8)

O_RDWR | O_CREAT is: Q1000010
You can check if a bit flag is set in C like this:
if (flags & O_RDWR) { ... }

fun example:
tic tac toe!
Here's a way to encode the

state of a tic tac toe game
in 18 bits:

100 010 x]o
010 001 x[o
010 100 olx
7 X

X positions O positions

ﬂoa-ﬁng point is weird 't

floating point 10.0
is not the same as
the integer 10

10 (64-bit integer):
0x000000000000000a
10.0 (64-bit float):

0x4024000000000000
Cwhat's this 4024 doing??7?

computer integers work

almost exactly the way
you'd expect
1+2-3=020

but floating point numbers
don't:
(0.1 +0.2) - 0.3 =
0.0000000000000000555

checking for float
equality is dangerous
if x == 0.3: —bad!

(0.1 + 0.2) is not equal to 0.3!

Instead, check if x is very close
to 0.3, something like this:

if abs(x - 0.3) < 0.0000001:

in floating point, very large integers get rounded

For examP(e: 10000000000000001.0 == 10000000000000000.0

(try comparing those 2 numbers in your favourite language! they're the same!)

16 zeros

some intvition
for precision

32-bit floats have about

8 digits of precision

(x +y) + zis not the same as x + (y + 2)

For example: (9007199254740992.0 + 1.0) - 1.0 = 9007199254740991.0

(the math term for this problem is "floating point addition isn't associative")

64-bit floats have about
16 digits of precision

the gaps between floats 8

floating point
numbers have to fit
info 32 or 64 bits

This means there are only 2
64-bit floats, the same way
there are only 2°* 64-bit
intfegers.

(terminology note: a 64-bit float
is often called a "double")

this means floating
point numbers have to
be spread out

You can imagine them all
spaced out on a number line,
like this:
B

T
with tiny gaps between them

the gaps start small

the next 64-bit float after 1.0
iS 1.00000000000000022204

the gap between
those two floats is
0.00000000000000022204,
or 2%

(oaps are always a power of 2)

the gaps get bigger as
the numbers get bigger

The next 64-bit float after
100000000000000000000.0 iS
100000000000000016384 . Q.

So the gap is 16384, or 2™

the gaps make
calevlations inaccurate

When you do math on
floating point numbers,
often you have to round the
result to the nearest float.

Usually this doesn't make a
big difference, but small
mistakes can add up.

this inaccuracy
is inevitable

Floating point was actually
designed very thoughtfully.
But if you cram infinite
numbers into 64 bits, you have
to sacrifice some accuracy.

science ¢ floating point 19

floating point was
invented to do
scientific computation

weather earthquake
simulations! modeling!
orbital
mechanics!

scientists don't need
unlimited precision...

o°

we only Know an
electron's mass to
q decimal places
anyway...

q decimal places is
already VERY precise!

... but they do need
TINY numbers and
GIANT numbers

mass of hydrogen atom:
1.6735575 * 107** grams

distance to Andromeda galaxy:

2.4 x 10% meters

floating point is inspired
by scientific notation

1.6735575 x 107% g
The idea in floating point is to

store a number by splitting it into:

- the exponent (like -24)
-» the multiplier (like 1.6735575)
—and its sign (+ or -)

floating point isn't just
used for science though

For example, Javascript's number
type is floating point. Before it
added BigInt in 2021, Javascript
didn't have integers at all!

Similarly, numbers in JSON are
often interpreted as floating
point numbers.

people usually explcm
floating point as "it's

scientific notation,
but in binary!" That's
true, but 1've never
found it intuitive so
we're going to explain
it a different way.

the floating point number line

20

the (é64-bit) floating point number line

Floating point numbers aren't evenly distributed. Instead, they're organized into windows:

(0.25, 0.5], (0.5, 1], [1,2], [2,4], [4,8], [8,16], all the way up to [2'°%, 2'%.

Every window has 2% floats in it.

2 1 -5+ o% 11 2 4 8

I ,,,,,,,,,,,,,,, | i N |I i]

\lekvi_—v_Jl J_ v J__ — Y]
.\\\ /// 2** numbers here 2** numbers here

2 hombers in each of these

the windows go from
REALLY small o REALLY big

The window closest to 0 is
(27102 p1022)
This is TINY: a hydrogen atom

weighs about 27 grams.

1023 1024]

The biggest window is [2
This is HUUUGE: the far‘rhesf
galaxy we know about is about
2% meters away.

the gaps between floats
double with every window
window gap 1
[1) 2] 2_52 |IIIIIII|
2 4
[2, 41 270 o]
4 8
[4, 8] 2_50 |||||||||
8
(8, 16] R

why does 10000000000000000.0 + 1
= 10000000000000000.07

- In the window [2", 2™}, the
gap between floats is 2"®?

-+ 10000000000000000.0 is in the
window [253, 2°", where the gap
is 2 (or 2)

—+ So the next float after
10000000000000000.0 is
10000000000000002 .0

the bits

2]

Floats need to fit into 64 bits. But how do we actually convert a number like 10.87 intfo 64 bits?

First, we split the number into 3 parts: the sign, a power of 2 and an offset¥—— 4. youal term is

10.87 = +(§ + 2.87)

biggest power of 2 that's less than 10.87

Next, we encode the sign, power of 2, and offset into bits!

"significand", but 1
find that term
confusing so we're
calling it "offset"

encoding the sign (1 bit)
+ 1s @
- is 1

floating point encoding
is defined in the
IEEE 754 standard

since it's standardized, it works
the same way on every computer!

it was originally defined in 1485

encoding the exponent
(11 bits, 27%% to 2'%)

2°-8
that the result is positive)

8
3
l add 1023 (this makes sure

1026

l write it in binary, in 11 bits

10000000010

encoding the offset (52 bits)
2.87

divide by the gap size, 2_qq

exponent-52
in this case (2 P)

1615666366319165.3
l round
1615666366319165

l write it in binary, 52 bits
01011011110101110000101000
11110101110000101000111101

And here's 10.87!

(01000000)(00100101)(10111101)(01110000) (10100011])(11010111)[00001010)(00111101)

NaN and infinity

12

NaN stands for

infinity
"not a number"
"Infinity" just means "this number

It means the result of the is too big for floating point to

NaNs spread

As soon as one NaN gets
in, it gets everywhere

calevlation is undefined. handle" There are two infinities: NaN x5 = NaN
it .) NaN + 2 = NaN
one positive, one negative.
@/0 = NaN .
2.0%%1024 = inf
sqrt(-1) = NaN 1/ 0= -inf > %1024 NaN != NaN
log(-1) = NaN inf - 10 = inf means 2% NaN ien't equal to anything
inf - inf = NaN (including itself)
NaN and infinity: the bits a note on byte order
A floating point value is NaN or infinity if the bits in the . .
exponent are all 1. For example, this is a NaN: [T Al of the floating point

(01111111)(711110001)(00000000)(00000000) [00000000)[20000000) (20000000)[00000000)
- — 1)
exponent offset

It's infinity if the offset bits are all 0, otherwise it's NaN.

There are 2% values like this: 2 of them are tinfinity and the
other 2°%-2 are NaN.

We vsually treat NaN like a single value though.

'\ examples in this zine use a big

endian byte order, becavuse it's
easier to read. But most
computers use a little endian
byte order (see page 7).

You can see this in action at
https://memory-spy.wizardzines.com

how floats are printed

13

computers lie when they
print out f(oa’rs\
(by rounding)
For example 0.12 isn't 0.12, it's
actually (roughly):
0.119999999999999995559

is my computer LYING to
me??? about NUMBERS?

the string -> float
translation

If your program says:

X =0.12
your interpreter / compiler needs
to translate "0.12" info the float
0.119999999999999995559. Most
languages will use the strtod
("string to double") function from
libe to do that translation.

the float -> string
translation

This is where the rounding comes in.
Computers round to make the
numbers shorter and easier to read.

1.19999999999999995559

L2

float -> string
translation is actually
super complicated

Every floating point number needs
a unique string representation.

There are a bunch of academic
papers about how to do this well,
search "Printing floating point
numbers accurately" to read more
about it.

some examples of
printing floats
1.19900000000000006573
Le1.199

1.19999999000000001637
1.19999999

1.19999999999998996358
Le 1.19999999999999

1.19999999999999995559

L‘1.2

you can also print floats
in base 16 or base 2

For example, 0.1 as a 32-bit
float is: p-4 is the
f_. base 16

base 16: Ox1.99999ap-4 version of e-4

base 2: 1.10011001100110011001101p-100

The base 2 / base 16
representations are not rounded,
but they're rarely used.

floating point math

24

let's deconstruct 0.1 + 0.2

® The closest 64-bit float to 0.1
is (roughly)
0.1000000000000000055511151231

@ For 0.2, it's (roughly)
0.2000000000000000111022302462

® 0.1000000000000000055511151231 +
0.2000000000000000111022302462 =
0.3000000000000000166533453693

@ Inconveniently,
0.3000000000000000166533453693
is exactly in between 2 floating
point numbers:
0.2999999999999999888977 and
0.30000000000000004440892

(® How do we pick the answer?
0.30000000000000004440892 has
an even offset (see page 21),
so we round to that one

losing a little
precision is okay

0.1 + 0.2 = 0.30000000000000004
is usvally no big deal. Do
you REALLY need your
answer to be accurate to
16 decimal places? Probably
not!

the more numbers you
add, the more
precision you lose

This Go code:
var meters float32 = 0.0
for i := @; i < 100000000; i++ {
meters += 0.01

3
fmt.Println(meters)

pﬁnfs out 262144, not 1000000
because 262144.0 + 0.1 = 262144.0

adding a number to
a MUCH smaller
number is bad

For example:

2%%53 + 1.0 = 2%%53

1.0 + 2%x%x-57 = 1.0
(try it!)

use scientific computing
libraries if you can

There are special algorithms
for adding up lots of small
floating numbers without
losing accuracy!

For example numpy implements
them.

fixed point

25

just because you see
0.23, doesn't mean it's
floating point

For example, in this RGBA color:
rgha(211, 7, 23, 0.23)
opacity
0.23 isn't a float at all, it's
the 8-bit integer 59. Let's see
how that works!

fixed point numbers
are integers

You interpret them as the
integer divided by some fixed
number (like 255 or 10000)

For example, that opacity
should be divided by 255

59 / 255 = 0.23ish

things fixed point
is often used for

money $1.23 => 123

time 0.1 seconds =>
100000 microseconds

opacity 0.23 => 59

fixed point is the most
common alternative to
floating point

It's very simple and it's
pretty easy to implement!

implementing fixed
point is easy

(especially if you only
need to add and subtract)

You jusf need:
— an integer

- some code to display it
(by dividing by 255 or
something)

fixed point can help
avoid accuracy issves

If you try to represent the
current Unix epoch in
nanoseconds as a 64-bit float,
you'll lose accuracy.

But if it's a 64-bit integer,
it'll be fine.

more floating point alternatives 26

there are many
alternative ways to
represent numbers

These are all implemented
in software (not hardware)
so they're a lot slower, and
different languages have
different libraries.

alternative 1: decimal
floating point

This is like regular floating
point, but in base 10 instead
of base 2. It's also
standardized in IEEE 754.

Examples: Python's decimal
module or Java's BigDecimal

alternative 2: fractions

This lets you do exact
calevlations with fractions
(1/10 + 2/10 = 3/10)

Examples: Python's fractions
module in the standard library,
Lisps have first-class support

alternative 3:
symbolic computation

For example, sqrt(2) instead
of 1.414.

You'll see this in computer
algebra systems like
Mathematica, Maple, or sympy.

alternative 4:
interval arithmetic

The idea is to store every
number as a range so that
you can precisely track your
error bars.

Probably the least mainstream
of these alternatives.

alternative 5:
binary-coded decimal

This is how floating point
numbers (and integers) were
stored on IBM computers in
the 60s, and you can still
occasionally see it today in
old formats like 1SO 8583 for
financial tfransactions.

Thonks for read ing

If you want to learn more, my favourite ways to learn about integers and
floats have been to:

& experiment to find out how my favourite programming languages handle
some of the edge cases in this zine (like integer overflow!)

% play around with the bits in a float at https://float.exposed
(or the bits in an integer at https://integer.exposed)

% use a debugger to see how integers and floats are actually represented in a
program's memory. You can try this at https://memory-spy.wizardzines.com

—— [eredis
Pairing: Marie LeBlanc Flanagan

Cover illustration: Vladimir Kasikovié
Editing: Dolly Lanuza, kamal Marhubi
Copy editing: Gersande La Fléche

Technical review: an anonymous friend |

@ this?
more ot
* Wizaordzines.com #

